Inexact Full Newton Method for Full Waveform Inversion
نویسندگان
چکیده
In this paper, we present an inexact full Newton optimization method for the full waveform inversion algorithm in the frequency domain which utilizes simultaneous sources based upon the phase encoding technique. Tests show that the full Newton minimization method achieves a high convergence rate and a reasonably accurate reconstruction of the model parameters. Taking advantage of a direct solver based on LU decomposition, the full Newton minimization method can also be implemented in a matrix-free manner. Tests with this algorithm were conducted with the BP/EAGE velocity model and highlight its high performance capabilities.
منابع مشابه
Discretized Adjoint State Time and Frequency Domain Full Waveform Inversion: A Comparative Study
This study derives the discretized adjoint states full waveform inversion (FWI) in both time and frequency domains based on the Lagrange multiplier method. To achieve this, we applied adjoint state inversion on the discretized wave equation in both time domain and frequency domain. Besides, in this article, we introduce reliability tests to show that the inversion is performing as it should be ...
متن کاملGPR Full Waveform Sensitivity Analysis using a FDTD Adjoint Method
Coarse structures involving low electrical contrasts can be profitably imaged by means of cheap and relatively simple methods such as travel time tomography, whereas fine structure involving sub-wavelength detail can only be recovered by inverting full-waveform data. Despite its complexity and high computation costs, full-waveform inversion of GPR data has become a popular tool for high-resolut...
متن کاملA projected Hessian matrix for full waveform inversion
A Hessian matrix in full waveform inversion (FWI) is difficult to compute directly because of high computational cost and an especially large memory requirement. Therefore, Newton-like methods are rarely feasible in realistic large-size FWI problems. We modify the quasi-Newton BFGS method to use a projected Hessian matrix that reduces both the computational cost and memory required, thereby mak...
متن کاملA Newton-CG Method for Full-Waveform Inversion in a Coupled Solid-Fluid System
We present a Newton-CG method for full-waveform seismic inversion. Our method comprises the adjoint-based computation of the gradient and Hessianvector products of the reduced problem and a preconditioned conjugate gradient method to solve the Newton system in matrix-free fashion. A trust-region globalization strategy and a multi-frequency inversion approach are applied. The governing equations...
متن کاملA projected Hessian for full waveform inversion
A Hessian matrix in full waveform inversion (FWI) is difficult to compute directly because of high computational cost and an especially large memory requirement. Therefore, Newton-like methods are rarely feasible in realistic largesize FWI problems. We modify the BFGS method to use a projected Hessian matrix that reduces both the computational cost and memory required, thereby making a quasiNew...
متن کامل